Coanalytic Transfinite Constructions

Zoltán Vidnyánszky

Eötvös Loránd University, Budapest

2012, Hejnice

Definition

A subset of the plane which intersects every line in exactly two points is called a *2-point set*.

Definition

A subset of the plane which intersects every line in exactly two points is called a *2-point set*.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

Definition

A subset of the plane which intersects every line in exactly two points is called a *2-point set*.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

Complexity

Can be a 2-point set Borel?

Definition

A subset of the plane which intersects every line in exactly two points is called a *2-point set*.

Existence

Theorem. (Mazurkiewicz) There exists a 2-point set.

Complexity

Can be a 2-point set Borel?

Theorem. (Bouhjar, Dijkstra, and van Mill) It cannot be F_{σ} !

Inductive proof

Standard proof of the existence:

Inductive proof

Standard proof of the existence: purely set theoretic construction, by transfinite induction.

Inductive proof

Standard proof of the existence: purely set theoretic construction, by transfinite induction.

Question

The set of possible choices is very large. Can we construct a "nice" set?

Coanalytic sets

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

Coanalytic sets

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

Regularity

- Lebesgue measurability
- Baire property

Coanalytic sets

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

Regularity

- Lebesgue measurability
- Baire property

Irregularity

• Con(exists an A Π_1^1 set such that $\omega < |A| < 2^{\omega}$)

Coanalytic sets

The projections of G_{δ} sets are called *analytic* (Σ_1^1) (or equivalently the continuous images of the Borel sets). The complements are called *coanalytic* (Π_1^1) .

Regularity

- Lebesgue measurability
- Baire property

Irregularity

- Con(exists an A Π_1^1 set such that $\omega < |A| < 2^{\omega}$)
- Con(∃ an uncountable coanalytic set without a perfect subset)

Miller's theorem

Miller's theorem

Theorem. (A. W. Miller 91') (V = L) There exists a Π_1^1 2-point set.

Miller's theorem

Miller's theorem

Theorem. (A. W. Miller 91') (V = L) There exists a Π_1^1 2-point set. Furthermore there exists a Π_1^1

- Hamel basis
- MAD family

Miller's theorem

Miller's theorem

Theorem. (A. W. Miller 91') (V = L) There exists a Π_1^1 2-point set. Furthermore there exists a Π_1^1

- Hamel basis
- MAD family

Method

Miller's method is frequently needed, but he does not give a general condition. The proof is hard, uses effective descriptive set theory and model theory.

$x \leq T y$

Definition. Let $x, y \in \mathbb{R}$, $x \leq_{\mathcal{T}} y$ iff there is a Turing machine computing x from y.

$x \leq T y$

Definition. Let $x, y \in \mathbb{R}$, $x \leq_T y$ iff there is a Turing machine computing x from y.

Turing-cofinal

Definition. A set $X \subset \mathbb{R}$ is Turing-cofinal if $(\forall z \in \mathbb{R})(\exists y \in X)(y \leq_T x)$.

$x \leq T y$

Definition. Let $x, y \in \mathbb{R}$, $x \leq_{\mathcal{T}} y$ iff there is a Turing machine computing x from y.

Turing-cofinal

Definition. A set $X \subset \mathbb{R}$ is Turing-cofinal if $(\forall z \in \mathbb{R})(\exists y \in X)(y \leq_T x)$.

General method

Theorem 1. (V=L) Let $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ be a coanalytic set. Assume that for every $(A,p) \in \mathbb{R}^{\leq \omega} \times \mathbb{R}$ the section $F_{(A,p)}$ is Turing-cofinal.

$x \leq_T y$

Definition. Let $x, y \in \mathbb{R}$, $x \leq_T y$ iff there is a Turing machine computing x from y.

Turing-cofinal

Definition. A set $X \subset \mathbb{R}$ is Turing-cofinal if $(\forall z \in \mathbb{R})(\exists y \in X)(y \leq_T x)$.

General method

Theorem 1. (V=L) Let $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ be a coanalytic set. Assume that for every $(A,p) \in \mathbb{R}^{\leq \omega} \times \mathbb{R}$ the section $F_{(A,p)}$ is Turing-cofinal.

Then there exists an enumeration of $\mathbb{R} = \{p_{\alpha} : \alpha < \omega_1\}$ and a coanalytic set $X = \{x_{\alpha} : \alpha < \omega_1\}$, such that $(\forall \alpha < \omega_1)(x_{\alpha} \in F_{(\{x_n:n \in \omega\},p_{\alpha})})$, where $\{x_n; n \in \omega\}$ is a certain enumeration of $\{x_{\beta} : \beta < \alpha\}$.

$\Sigma^0_1(y),\;\Pi^0_1(y)$

Definition. Let $\{I_n:n\in\omega\}$ be a recursive enumeration of the open intervals with rational endpoints. An open set G is called *recursive* in y, iff there exists a subsequence $\{n_k:k\in\omega\}\leq_T y$, such that $G=\cup_k I_{n_k}$. (the class of these sets is denoted by $\Sigma^0_1(y)$).

$$\Pi_1^0(y) = \{ G^c : G \in \Sigma_1^0(y) \}$$

We can define these classes similarly for subsets of ω , $\omega \times \mathbb{R}$, \mathbb{R}^2 etc. using a recursive enumeration of $\{n\}$, $\{n\} \times I_m$, $I_n \times I_m$ etc.

$\Sigma_1^0(y)$, $\Pi_1^0(y)$

Definition. Let $\{I_n:n\in\omega\}$ be a recursive enumeration of the open intervals with rational endpoints. An open set G is called *recursive* in y, iff there exists a subsequence $\{n_k:k\in\omega\}\leq_T y$, such that $G=\cup_k I_{n_k}$. (the class of these sets is denoted by $\Sigma^0_1(y)$).

$$\Pi^0_1(y) = \{G^c : G \in \Sigma^0_1(y)\}$$

We can define these classes similarly for subsets of ω , $\omega \times \mathbb{R}$, \mathbb{R}^2 etc. using a recursive enumeration of $\{n\}$, $\{n\} \times I_m$, $I_n \times I_m$ etc.

The lightface classes

Let us define for n > 2

$$\begin{split} \Sigma_n^0(y) &= \{ \textit{proj}_{\mathbb{R}}(A) : A \subset \mathbb{R} \times \omega, A \in \Pi_{n-1}^0(y) \}, \\ \Pi_n^0(y) &= \{ A^c : A \in \Sigma_n^0(y) \}. \end{split}$$

Projective lightface classes

$$\Sigma_1^1(y) = \{ proj_{\mathbb{R}}(A) : A \subset \mathbb{R} \times \mathbb{R}, A \in \Pi_2^0(y) \},$$

$$\Pi_1^1(y) = \{ A^c : A \in \Sigma_1^1(y) \},$$

$$\Delta_1^1(y) = \Sigma_1^1(y) \cap \Pi_1^1(y).$$

Projective lightface classes

$$\Sigma_1^1(y) = \{ proj_{\mathbb{R}}(A) : A \subset \mathbb{R} \times \mathbb{R}, A \in \Pi_2^0(y) \},$$

$$\Pi_1^1(y) = \{ A^c : A \in \Sigma_1^1(y) \},$$

$$\Delta_1^1(y) = \Sigma_1^1(y) \cap \Pi_1^1(y).$$

Lightface and boldface

$$oldsymbol{\Sigma}_{oldsymbol{j}}^{oldsymbol{i}} = \cup_{y \in \mathbb{R}} \Sigma_{oldsymbol{j}}^{oldsymbol{i}}(y)$$

Projective lightface classes

$$\Sigma_1^1(y) = \{ proj_{\mathbb{R}}(A) : A \subset \mathbb{R} \times \mathbb{R}, A \in \Pi_2^0(y) \},$$

$$\Pi_1^1(y) = \{ A^c : A \in \Sigma_1^1(y) \},$$

$$\Delta_1^1(y) = \Sigma_1^1(y) \cap \Pi_1^1(y).$$

Lightface and boldface

$$\mathbf{\Sigma}_{\mathbf{j}}^{i} = \cup_{y \in \mathbb{R}} \Sigma_{j}^{i}(y)$$

Key theorem

For $x, y \subset \omega$ if $x \in \Delta_1^1(y)$ then x is called *hyperarithmetic* in y, denoted by $x \leq_h y$.

Theorem. (Spector, Gandy) Suppose that a set $A \subset \mathbb{R}^2$ is coanalytic. Then $(\exists y \leq_h x)((x,y) \in A)$ is also coanalytic.

Strengthening

Cofinality in hyperdegrees

Definition. A set $X \subset \mathbb{R}$ is called *cofinal in hyperdegrees* if $(\forall z \in \mathbb{R})(\exists y \in X)(z \leq_h y)$.

Strengthening

Cofinality in hyperdegrees

Definition. A set $X \subset \mathbb{R}$ is called *cofinal in hyperdegrees* if $(\forall z \in \mathbb{R})(\exists y \in X)(z \leq_h y)$.

Stronger version

Theorem 2. (V=L) Let $y \in \mathbb{R}$, $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ be a $\Pi_1^1(y)$ set. Assume that for every $(A,p) \in \mathbb{R}^{\leq \omega} \times \mathbb{R}$ the section $F_{(A,p)}$ is cofinal in hyperdegrees. Then there exists an enumeration of $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}$ and a $\Pi_1^1(y)$ set $X = \{x_\alpha : \alpha < \omega_1\}$, such that $(\forall \alpha < \omega_1)(x_\alpha \in F_{(\{x_n:n\in\omega\},p_\alpha)})$, where $\{x_n : n\in\omega\}$ is a certain enumeration of $\{x_\beta : \beta < \alpha\}$.

Strengthening

Cofinality in hyperdegrees

Definition. A set $X \subset \mathbb{R}$ is called *cofinal in hyperdegrees* if $(\forall z \in \mathbb{R})(\exists y \in X)(z \leq_h y)$.

Stronger version

Theorem 2. (V=L) Let $y \in \mathbb{R}$, $F \subset \mathbb{R}^{\leq \omega} \times \mathbb{R} \times \mathbb{R}$ be a $\Pi_1^1(y)$ set. Assume that for every $(A,p) \in \mathbb{R}^{\leq \omega} \times \mathbb{R}$ the section $F_{(A,p)}$ is cofinal in hyperdegrees. Then there exists an enumeration of $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}$ and a $\Pi_1^1(y)$ set $X = \{x_\alpha : \alpha < \omega_1\}$, such that $(\forall \alpha < \omega_1)(x_\alpha \in F_{(\{x_n:n\in\omega\},p_\alpha)})$, where $\{x_n : n\in\omega\}$ is a certain enumeration of $\{x_\beta : \beta < \alpha\}$.

Remark

The previous theorem holds true replacing $\mathbb R$ with $\mathbb R^n$, ω^ω or 2^ω .

Consequences

Miller's results

Theorem 1. implies Miller's results: consistent existence of coanalytic MAD family, 2-point set and Hamel basis.

Consequences

Miller's results

Theorem 1. implies Miller's results: consistent existence of coanalytic MAD family, 2-point set and Hamel basis.

V=L?

If the condition holds then $\omega_1^L = \omega_1$.

Consequences

Miller's results

Theorem 1. implies Miller's results: consistent existence of coanalytic MAD family, 2-point set and Hamel basis.

V=L?

If the condition holds then $\omega_1^L = \omega_1$. Is it equivalent to $(2^{\omega})^L = 2^{\omega}$?

Consequences: C^1 curves

Existence

(CH) There exists an uncountable $X \subset \mathbb{R}^2$ intersecting every C^1 curve in countably many points.

Consequences: C¹ curves

Existence

(CH) There exists an uncountable $X \subset \mathbb{R}^2$ intersecting every C^1 curve in countably many points.

Consistent nonexistence

Theorem (J. Hart, K. Kunen) (PFA) For every uncountable $X \subset \mathbb{R}^2$ there exists a C^1 curve intersecting it in uncountably many points.

Consequences: C¹ curves

Existence

(CH) There exists an uncountable $X \subset \mathbb{R}^2$ intersecting every C^1 curve in countably many points.

Consistent nonexistence

Theorem (J. Hart, K. Kunen) (PFA) For every uncountable $X \subset \mathbb{R}^2$ there exists a C^1 curve intersecting it in uncountably many points.

Coanalytic in V=L

Theorem 1. implies that under (V=L) there exists an uncountable coanalytic $X \subset \mathbb{R}^2$ set intersecting every C^1 curve in countably many points.

Consequences: C^1 curves

Existence

(CH) There exists an uncountable $X \subset \mathbb{R}^2$ intersecting every C^1 curve in countably many points.

Consistent nonexistence

Theorem (J. Hart, K. Kunen) (PFA) For every uncountable $X \subset \mathbb{R}^2$ there exists a C^1 curve intersecting it in uncountably many points.

Coanalytic in V=L

Theorem 1. implies that under (V=L) there exists an uncountable coanalytic $X \subset \mathbb{R}^2$ set intersecting every C^1 curve in countably many points.

Remark

In almost every case there are no Σ_1^1 sets.

Thank you!